This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017) (Revised by NM, 24-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbdm | |- [_ A / x ]_ dom B = dom [_ A / x ]_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab | |- [_ A / x ]_ { y | E. w <. y , w >. e. B } = { y | [. A / x ]. E. w <. y , w >. e. B } |
|
| 2 | sbcex2 | |- ( [. A / x ]. E. w <. y , w >. e. B <-> E. w [. A / x ]. <. y , w >. e. B ) |
|
| 3 | sbcel2 | |- ( [. A / x ]. <. y , w >. e. B <-> <. y , w >. e. [_ A / x ]_ B ) |
|
| 4 | 3 | exbii | |- ( E. w [. A / x ]. <. y , w >. e. B <-> E. w <. y , w >. e. [_ A / x ]_ B ) |
| 5 | 2 4 | bitri | |- ( [. A / x ]. E. w <. y , w >. e. B <-> E. w <. y , w >. e. [_ A / x ]_ B ) |
| 6 | 5 | abbii | |- { y | [. A / x ]. E. w <. y , w >. e. B } = { y | E. w <. y , w >. e. [_ A / x ]_ B } |
| 7 | 1 6 | eqtri | |- [_ A / x ]_ { y | E. w <. y , w >. e. B } = { y | E. w <. y , w >. e. [_ A / x ]_ B } |
| 8 | dfdm3 | |- dom B = { y | E. w <. y , w >. e. B } |
|
| 9 | 8 | csbeq2i | |- [_ A / x ]_ dom B = [_ A / x ]_ { y | E. w <. y , w >. e. B } |
| 10 | dfdm3 | |- dom [_ A / x ]_ B = { y | E. w <. y , w >. e. [_ A / x ]_ B } |
|
| 11 | 7 9 10 | 3eqtr4i | |- [_ A / x ]_ dom B = dom [_ A / x ]_ B |