This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdm5 | |- dom A = ( ( 1st |` ( _V X. _V ) ) " A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | |- ( E. y E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> E. p E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
|
| 2 | opex | |- <. z , y >. e. _V |
|
| 3 | breq1 | |- ( p = <. z , y >. -> ( p 1st x <-> <. z , y >. 1st x ) ) |
|
| 4 | eleq1 | |- ( p = <. z , y >. -> ( p e. A <-> <. z , y >. e. A ) ) |
|
| 5 | 3 4 | anbi12d | |- ( p = <. z , y >. -> ( ( p 1st x /\ p e. A ) <-> ( <. z , y >. 1st x /\ <. z , y >. e. A ) ) ) |
| 6 | vex | |- z e. _V |
|
| 7 | vex | |- y e. _V |
|
| 8 | 6 7 | br1steq | |- ( <. z , y >. 1st x <-> x = z ) |
| 9 | equcom | |- ( x = z <-> z = x ) |
|
| 10 | 8 9 | bitri | |- ( <. z , y >. 1st x <-> z = x ) |
| 11 | 10 | anbi1i | |- ( ( <. z , y >. 1st x /\ <. z , y >. e. A ) <-> ( z = x /\ <. z , y >. e. A ) ) |
| 12 | 5 11 | bitrdi | |- ( p = <. z , y >. -> ( ( p 1st x /\ p e. A ) <-> ( z = x /\ <. z , y >. e. A ) ) ) |
| 13 | 2 12 | ceqsexv | |- ( E. p ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> ( z = x /\ <. z , y >. e. A ) ) |
| 14 | 13 | exbii | |- ( E. z E. p ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> E. z ( z = x /\ <. z , y >. e. A ) ) |
| 15 | excom | |- ( E. z E. p ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
|
| 16 | vex | |- x e. _V |
|
| 17 | opeq1 | |- ( z = x -> <. z , y >. = <. x , y >. ) |
|
| 18 | 17 | eleq1d | |- ( z = x -> ( <. z , y >. e. A <-> <. x , y >. e. A ) ) |
| 19 | 16 18 | ceqsexv | |- ( E. z ( z = x /\ <. z , y >. e. A ) <-> <. x , y >. e. A ) |
| 20 | 14 15 19 | 3bitr3ri | |- ( <. x , y >. e. A <-> E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
| 21 | 20 | exbii | |- ( E. y <. x , y >. e. A <-> E. y E. p E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
| 22 | ancom | |- ( ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) <-> ( p ( 1st |` ( _V X. _V ) ) x /\ p e. A ) ) |
|
| 23 | anass | |- ( ( ( E. y E. z p = <. z , y >. /\ p 1st x ) /\ p e. A ) <-> ( E. y E. z p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
|
| 24 | 16 | brresi | |- ( p ( 1st |` ( _V X. _V ) ) x <-> ( p e. ( _V X. _V ) /\ p 1st x ) ) |
| 25 | elvv | |- ( p e. ( _V X. _V ) <-> E. z E. y p = <. z , y >. ) |
|
| 26 | excom | |- ( E. z E. y p = <. z , y >. <-> E. y E. z p = <. z , y >. ) |
|
| 27 | 25 26 | bitri | |- ( p e. ( _V X. _V ) <-> E. y E. z p = <. z , y >. ) |
| 28 | 27 | anbi1i | |- ( ( p e. ( _V X. _V ) /\ p 1st x ) <-> ( E. y E. z p = <. z , y >. /\ p 1st x ) ) |
| 29 | 24 28 | bitri | |- ( p ( 1st |` ( _V X. _V ) ) x <-> ( E. y E. z p = <. z , y >. /\ p 1st x ) ) |
| 30 | 29 | anbi1i | |- ( ( p ( 1st |` ( _V X. _V ) ) x /\ p e. A ) <-> ( ( E. y E. z p = <. z , y >. /\ p 1st x ) /\ p e. A ) ) |
| 31 | 19.41vv | |- ( E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) <-> ( E. y E. z p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
|
| 32 | 23 30 31 | 3bitr4i | |- ( ( p ( 1st |` ( _V X. _V ) ) x /\ p e. A ) <-> E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
| 33 | 22 32 | bitri | |- ( ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) <-> E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
| 34 | 33 | exbii | |- ( E. p ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) <-> E. p E. y E. z ( p = <. z , y >. /\ ( p 1st x /\ p e. A ) ) ) |
| 35 | 1 21 34 | 3bitr4i | |- ( E. y <. x , y >. e. A <-> E. p ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) ) |
| 36 | 16 | eldm2 | |- ( x e. dom A <-> E. y <. x , y >. e. A ) |
| 37 | 16 | elima2 | |- ( x e. ( ( 1st |` ( _V X. _V ) ) " A ) <-> E. p ( p e. A /\ p ( 1st |` ( _V X. _V ) ) x ) ) |
| 38 | 35 36 37 | 3bitr4i | |- ( x e. dom A <-> x e. ( ( 1st |` ( _V X. _V ) ) " A ) ) |
| 39 | 38 | eqriv | |- dom A = ( ( 1st |` ( _V X. _V ) ) " A ) |