This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of cosets by R (see the comment of df-coss ). (Contributed by Peter Mazsa, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcoss3 | |- ,~ R = ( R o. `' R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg | |- ( ( x e. _V /\ u e. _V ) -> ( x `' R u <-> u R x ) ) |
|
| 2 | 1 | el2v | |- ( x `' R u <-> u R x ) |
| 3 | 2 | anbi1i | |- ( ( x `' R u /\ u R y ) <-> ( u R x /\ u R y ) ) |
| 4 | 3 | exbii | |- ( E. u ( x `' R u /\ u R y ) <-> E. u ( u R x /\ u R y ) ) |
| 5 | 4 | opabbii | |- { <. x , y >. | E. u ( x `' R u /\ u R y ) } = { <. x , y >. | E. u ( u R x /\ u R y ) } |
| 6 | df-co | |- ( R o. `' R ) = { <. x , y >. | E. u ( x `' R u /\ u R y ) } |
|
| 7 | df-coss | |- ,~ R = { <. x , y >. | E. u ( u R x /\ u R y ) } |
|
| 8 | 5 6 7 | 3eqtr4ri | |- ,~ R = ( R o. `' R ) |