This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnvrefrel2 | |- ( CnvRefRel R <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrel | |- ( CnvRefRel R <-> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
|
| 2 | dfrel6 | |- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
|
| 3 | 2 | biimpi | |- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
| 4 | 3 | sseq1d | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) <-> R C_ ( _I i^i ( dom R X. ran R ) ) ) ) |
| 5 | 4 | pm5.32ri | |- ( ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
| 6 | 1 5 | bitri | |- ( CnvRefRel R <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |