This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-odz | |- odZ = ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | codz | |- odZ |
|
| 1 | vn | |- n |
|
| 2 | cn | |- NN |
|
| 3 | vx | |- x |
|
| 4 | cz | |- ZZ |
|
| 5 | 3 | cv | |- x |
| 6 | cgcd | |- gcd |
|
| 7 | 1 | cv | |- n |
| 8 | 5 7 6 | co | |- ( x gcd n ) |
| 9 | c1 | |- 1 |
|
| 10 | 8 9 | wceq | |- ( x gcd n ) = 1 |
| 11 | 10 3 4 | crab | |- { x e. ZZ | ( x gcd n ) = 1 } |
| 12 | vm | |- m |
|
| 13 | cdvds | |- || |
|
| 14 | cexp | |- ^ |
|
| 15 | 12 | cv | |- m |
| 16 | 5 15 14 | co | |- ( x ^ m ) |
| 17 | cmin | |- - |
|
| 18 | 16 9 17 | co | |- ( ( x ^ m ) - 1 ) |
| 19 | 7 18 13 | wbr | |- n || ( ( x ^ m ) - 1 ) |
| 20 | 19 12 2 | crab | |- { m e. NN | n || ( ( x ^ m ) - 1 ) } |
| 21 | cr | |- RR |
|
| 22 | clt | |- < |
|
| 23 | 20 21 22 | cinf | |- inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) |
| 24 | 3 11 23 | cmpt | |- ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) |
| 25 | 1 2 24 | cmpt | |- ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |
| 26 | 0 25 | wceq | |- odZ = ( n e. NN |-> ( x e. { x e. ZZ | ( x gcd n ) = 1 } |-> inf ( { m e. NN | n || ( ( x ^ m ) - 1 ) } , RR , < ) ) ) |