This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-odz | ⊢ odℤ = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | codz | ⊢ odℤ | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn | ⊢ ℕ | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cz | ⊢ ℤ | |
| 5 | 3 | cv | ⊢ 𝑥 |
| 6 | cgcd | ⊢ gcd | |
| 7 | 1 | cv | ⊢ 𝑛 |
| 8 | 5 7 6 | co | ⊢ ( 𝑥 gcd 𝑛 ) |
| 9 | c1 | ⊢ 1 | |
| 10 | 8 9 | wceq | ⊢ ( 𝑥 gcd 𝑛 ) = 1 |
| 11 | 10 3 4 | crab | ⊢ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } |
| 12 | vm | ⊢ 𝑚 | |
| 13 | cdvds | ⊢ ∥ | |
| 14 | cexp | ⊢ ↑ | |
| 15 | 12 | cv | ⊢ 𝑚 |
| 16 | 5 15 14 | co | ⊢ ( 𝑥 ↑ 𝑚 ) |
| 17 | cmin | ⊢ − | |
| 18 | 16 9 17 | co | ⊢ ( ( 𝑥 ↑ 𝑚 ) − 1 ) |
| 19 | 7 18 13 | wbr | ⊢ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) |
| 20 | 19 12 2 | crab | ⊢ { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } |
| 21 | cr | ⊢ ℝ | |
| 22 | clt | ⊢ < | |
| 23 | 20 21 22 | cinf | ⊢ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) |
| 24 | 3 11 23 | cmpt | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) |
| 25 | 1 2 24 | cmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) ) |
| 26 | 0 25 | wceq | ⊢ odℤ = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) ) |