This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a natural transformation between two functors. A natural transformation A : F --> G is a collection of arrows A ( x ) : F ( x ) --> G ( x ) , such that A ( y ) o. F ( h ) = G ( h ) o. A ( x ) for each morphism h : x --> y . Definition 6.1 in Adamek p. 83, and definition in Lang p. 65. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nat | |- Nat = ( t e. Cat , u e. Cat |-> ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnat | |- Nat |
|
| 1 | vt | |- t |
|
| 2 | ccat | |- Cat |
|
| 3 | vu | |- u |
|
| 4 | vf | |- f |
|
| 5 | 1 | cv | |- t |
| 6 | cfunc | |- Func |
|
| 7 | 3 | cv | |- u |
| 8 | 5 7 6 | co | |- ( t Func u ) |
| 9 | vg | |- g |
|
| 10 | c1st | |- 1st |
|
| 11 | 4 | cv | |- f |
| 12 | 11 10 | cfv | |- ( 1st ` f ) |
| 13 | vr | |- r |
|
| 14 | 9 | cv | |- g |
| 15 | 14 10 | cfv | |- ( 1st ` g ) |
| 16 | vs | |- s |
|
| 17 | va | |- a |
|
| 18 | vx | |- x |
|
| 19 | cbs | |- Base |
|
| 20 | 5 19 | cfv | |- ( Base ` t ) |
| 21 | 13 | cv | |- r |
| 22 | 18 | cv | |- x |
| 23 | 22 21 | cfv | |- ( r ` x ) |
| 24 | chom | |- Hom |
|
| 25 | 7 24 | cfv | |- ( Hom ` u ) |
| 26 | 16 | cv | |- s |
| 27 | 22 26 | cfv | |- ( s ` x ) |
| 28 | 23 27 25 | co | |- ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) |
| 29 | 18 20 28 | cixp | |- X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) |
| 30 | vy | |- y |
|
| 31 | vh | |- h |
|
| 32 | 5 24 | cfv | |- ( Hom ` t ) |
| 33 | 30 | cv | |- y |
| 34 | 22 33 32 | co | |- ( x ( Hom ` t ) y ) |
| 35 | 17 | cv | |- a |
| 36 | 33 35 | cfv | |- ( a ` y ) |
| 37 | 33 21 | cfv | |- ( r ` y ) |
| 38 | 23 37 | cop | |- <. ( r ` x ) , ( r ` y ) >. |
| 39 | cco | |- comp |
|
| 40 | 7 39 | cfv | |- ( comp ` u ) |
| 41 | 33 26 | cfv | |- ( s ` y ) |
| 42 | 38 41 40 | co | |- ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) |
| 43 | c2nd | |- 2nd |
|
| 44 | 11 43 | cfv | |- ( 2nd ` f ) |
| 45 | 22 33 44 | co | |- ( x ( 2nd ` f ) y ) |
| 46 | 31 | cv | |- h |
| 47 | 46 45 | cfv | |- ( ( x ( 2nd ` f ) y ) ` h ) |
| 48 | 36 47 42 | co | |- ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) |
| 49 | 14 43 | cfv | |- ( 2nd ` g ) |
| 50 | 22 33 49 | co | |- ( x ( 2nd ` g ) y ) |
| 51 | 46 50 | cfv | |- ( ( x ( 2nd ` g ) y ) ` h ) |
| 52 | 23 27 | cop | |- <. ( r ` x ) , ( s ` x ) >. |
| 53 | 52 41 40 | co | |- ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) |
| 54 | 22 35 | cfv | |- ( a ` x ) |
| 55 | 51 54 53 | co | |- ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
| 56 | 48 55 | wceq | |- ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
| 57 | 56 31 34 | wral | |- A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
| 58 | 57 30 20 | wral | |- A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
| 59 | 58 18 20 | wral | |- A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) |
| 60 | 59 17 29 | crab | |- { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } |
| 61 | 16 15 60 | csb | |- [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } |
| 62 | 13 12 61 | csb | |- [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } |
| 63 | 4 9 8 8 62 | cmpo | |- ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) |
| 64 | 1 3 2 2 63 | cmpo | |- ( t e. Cat , u e. Cat |-> ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) ) |
| 65 | 0 64 | wceq | |- Nat = ( t e. Cat , u e. Cat |-> ( f e. ( t Func u ) , g e. ( t Func u ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` t ) ( ( r ` x ) ( Hom ` u ) ( s ` x ) ) | A. x e. ( Base ` t ) A. y e. ( Base ` t ) A. h e. ( x ( Hom ` t ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` u ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` u ) ( s ` y ) ) ( a ` x ) ) } ) ) |