This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the category of functors between two fixed categories, with the objects being functors and the morphisms being natural transformations. Definition 6.15 in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fuc | |- FuncCat = ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfuc | |- FuncCat |
|
| 1 | vt | |- t |
|
| 2 | ccat | |- Cat |
|
| 3 | vu | |- u |
|
| 4 | cbs | |- Base |
|
| 5 | cnx | |- ndx |
|
| 6 | 5 4 | cfv | |- ( Base ` ndx ) |
| 7 | 1 | cv | |- t |
| 8 | cfunc | |- Func |
|
| 9 | 3 | cv | |- u |
| 10 | 7 9 8 | co | |- ( t Func u ) |
| 11 | 6 10 | cop | |- <. ( Base ` ndx ) , ( t Func u ) >. |
| 12 | chom | |- Hom |
|
| 13 | 5 12 | cfv | |- ( Hom ` ndx ) |
| 14 | cnat | |- Nat |
|
| 15 | 7 9 14 | co | |- ( t Nat u ) |
| 16 | 13 15 | cop | |- <. ( Hom ` ndx ) , ( t Nat u ) >. |
| 17 | cco | |- comp |
|
| 18 | 5 17 | cfv | |- ( comp ` ndx ) |
| 19 | vv | |- v |
|
| 20 | 10 10 | cxp | |- ( ( t Func u ) X. ( t Func u ) ) |
| 21 | vh | |- h |
|
| 22 | c1st | |- 1st |
|
| 23 | 19 | cv | |- v |
| 24 | 23 22 | cfv | |- ( 1st ` v ) |
| 25 | vf | |- f |
|
| 26 | c2nd | |- 2nd |
|
| 27 | 23 26 | cfv | |- ( 2nd ` v ) |
| 28 | vg | |- g |
|
| 29 | vb | |- b |
|
| 30 | 28 | cv | |- g |
| 31 | 21 | cv | |- h |
| 32 | 30 31 15 | co | |- ( g ( t Nat u ) h ) |
| 33 | va | |- a |
|
| 34 | 25 | cv | |- f |
| 35 | 34 30 15 | co | |- ( f ( t Nat u ) g ) |
| 36 | vx | |- x |
|
| 37 | 7 4 | cfv | |- ( Base ` t ) |
| 38 | 29 | cv | |- b |
| 39 | 36 | cv | |- x |
| 40 | 39 38 | cfv | |- ( b ` x ) |
| 41 | 34 22 | cfv | |- ( 1st ` f ) |
| 42 | 39 41 | cfv | |- ( ( 1st ` f ) ` x ) |
| 43 | 30 22 | cfv | |- ( 1st ` g ) |
| 44 | 39 43 | cfv | |- ( ( 1st ` g ) ` x ) |
| 45 | 42 44 | cop | |- <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. |
| 46 | 9 17 | cfv | |- ( comp ` u ) |
| 47 | 31 22 | cfv | |- ( 1st ` h ) |
| 48 | 39 47 | cfv | |- ( ( 1st ` h ) ` x ) |
| 49 | 45 48 46 | co | |- ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) |
| 50 | 33 | cv | |- a |
| 51 | 39 50 | cfv | |- ( a ` x ) |
| 52 | 40 51 49 | co | |- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) |
| 53 | 36 37 52 | cmpt | |- ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) |
| 54 | 29 33 32 35 53 | cmpo | |- ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
| 55 | 28 27 54 | csb | |- [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
| 56 | 25 24 55 | csb | |- [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
| 57 | 19 21 20 10 56 | cmpo | |- ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
| 58 | 18 57 | cop | |- <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. |
| 59 | 11 16 58 | ctp | |- { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } |
| 60 | 1 3 2 2 59 | cmpo | |- ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
| 61 | 0 60 | wceq | |- FuncCat = ( t e. Cat , u e. Cat |-> { <. ( Base ` ndx ) , ( t Func u ) >. , <. ( Hom ` ndx ) , ( t Nat u ) >. , <. ( comp ` ndx ) , ( v e. ( ( t Func u ) X. ( t Func u ) ) , h e. ( t Func u ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( t Nat u ) h ) , a e. ( f ( t Nat u ) g ) |-> ( x e. ( Base ` t ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` u ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |