This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ghm | |- GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cghm | |- GrpHom |
|
| 1 | vs | |- s |
|
| 2 | cgrp | |- Grp |
|
| 3 | vt | |- t |
|
| 4 | vg | |- g |
|
| 5 | cbs | |- Base |
|
| 6 | 1 | cv | |- s |
| 7 | 6 5 | cfv | |- ( Base ` s ) |
| 8 | vw | |- w |
|
| 9 | 4 | cv | |- g |
| 10 | 8 | cv | |- w |
| 11 | 3 | cv | |- t |
| 12 | 11 5 | cfv | |- ( Base ` t ) |
| 13 | 10 12 9 | wf | |- g : w --> ( Base ` t ) |
| 14 | vx | |- x |
|
| 15 | vy | |- y |
|
| 16 | 14 | cv | |- x |
| 17 | cplusg | |- +g |
|
| 18 | 6 17 | cfv | |- ( +g ` s ) |
| 19 | 15 | cv | |- y |
| 20 | 16 19 18 | co | |- ( x ( +g ` s ) y ) |
| 21 | 20 9 | cfv | |- ( g ` ( x ( +g ` s ) y ) ) |
| 22 | 16 9 | cfv | |- ( g ` x ) |
| 23 | 11 17 | cfv | |- ( +g ` t ) |
| 24 | 19 9 | cfv | |- ( g ` y ) |
| 25 | 22 24 23 | co | |- ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 26 | 21 25 | wceq | |- ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 27 | 26 15 10 | wral | |- A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 28 | 27 14 10 | wral | |- A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) |
| 29 | 13 28 | wa | |- ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) |
| 30 | 29 8 7 | wsbc | |- [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) |
| 31 | 30 4 | cab | |- { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } |
| 32 | 1 3 2 2 31 | cmpo | |- ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |
| 33 | 0 32 | wceq | |- GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |