This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the evaluation map for the univariate polynomial algebra. The function ( eval1R ) : V --> ( R ^m R ) makes sense when R is a ring, and V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from R into an element of R formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-evl1 | |- eval1 = ( r e. _V |-> [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ce1 | |- eval1 |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- r |
| 5 | 4 3 | cfv | |- ( Base ` r ) |
| 6 | vb | |- b |
|
| 7 | vx | |- x |
|
| 8 | 6 | cv | |- b |
| 9 | cmap | |- ^m |
|
| 10 | c1o | |- 1o |
|
| 11 | 8 10 9 | co | |- ( b ^m 1o ) |
| 12 | 8 11 9 | co | |- ( b ^m ( b ^m 1o ) ) |
| 13 | 7 | cv | |- x |
| 14 | vy | |- y |
|
| 15 | 14 | cv | |- y |
| 16 | 15 | csn | |- { y } |
| 17 | 10 16 | cxp | |- ( 1o X. { y } ) |
| 18 | 14 8 17 | cmpt | |- ( y e. b |-> ( 1o X. { y } ) ) |
| 19 | 13 18 | ccom | |- ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) |
| 20 | 7 12 19 | cmpt | |- ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) |
| 21 | cevl | |- eval |
|
| 22 | 10 4 21 | co | |- ( 1o eval r ) |
| 23 | 20 22 | ccom | |- ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) |
| 24 | 6 5 23 | csb | |- [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) |
| 25 | 1 2 24 | cmpt | |- ( r e. _V |-> [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) ) |
| 26 | 0 25 | wceq | |- eval1 = ( r e. _V |-> [_ ( Base ` r ) / b ]_ ( ( x e. ( b ^m ( b ^m 1o ) ) |-> ( x o. ( y e. b |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval r ) ) ) |