This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the projection operator for a direct product. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dpj | |- dProj = ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdpj | |- dProj |
|
| 1 | vg | |- g |
|
| 2 | cgrp | |- Grp |
|
| 3 | vs | |- s |
|
| 4 | cdprd | |- DProd |
|
| 5 | 4 | cdm | |- dom DProd |
| 6 | 1 | cv | |- g |
| 7 | 6 | csn | |- { g } |
| 8 | 5 7 | cima | |- ( dom DProd " { g } ) |
| 9 | vi | |- i |
|
| 10 | 3 | cv | |- s |
| 11 | 10 | cdm | |- dom s |
| 12 | 9 | cv | |- i |
| 13 | 12 10 | cfv | |- ( s ` i ) |
| 14 | cpj1 | |- proj1 |
|
| 15 | 6 14 | cfv | |- ( proj1 ` g ) |
| 16 | 12 | csn | |- { i } |
| 17 | 11 16 | cdif | |- ( dom s \ { i } ) |
| 18 | 10 17 | cres | |- ( s |` ( dom s \ { i } ) ) |
| 19 | 6 18 4 | co | |- ( g DProd ( s |` ( dom s \ { i } ) ) ) |
| 20 | 13 19 15 | co | |- ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) |
| 21 | 9 11 20 | cmpt | |- ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) |
| 22 | 1 3 2 8 21 | cmpo | |- ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |
| 23 | 0 22 | wceq | |- dProj = ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |