This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endomorphisms on an object of a category. (Contributed by BJ, 4-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-end | ⊢ End = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 ( Base ‘ ndx ) , ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cend | ⊢ End | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑐 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 7 | cnx | ⊢ ndx | |
| 8 | 7 4 | cfv | ⊢ ( Base ‘ ndx ) |
| 9 | 3 | cv | ⊢ 𝑥 |
| 10 | chom | ⊢ Hom | |
| 11 | 5 10 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
| 12 | 9 9 11 | co | ⊢ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) |
| 13 | 8 12 | cop | ⊢ 〈 ( Base ‘ ndx ) , ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) 〉 |
| 14 | cplusg | ⊢ +g | |
| 15 | 7 14 | cfv | ⊢ ( +g ‘ ndx ) |
| 16 | 9 9 | cop | ⊢ 〈 𝑥 , 𝑥 〉 |
| 17 | cco | ⊢ comp | |
| 18 | 5 17 | cfv | ⊢ ( comp ‘ 𝑐 ) |
| 19 | 16 9 18 | co | ⊢ ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) |
| 20 | 15 19 | cop | ⊢ 〈 ( +g ‘ ndx ) , ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) 〉 |
| 21 | 13 20 | cpr | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) 〉 } |
| 22 | 3 6 21 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 ( Base ‘ ndx ) , ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) 〉 } ) |
| 23 | 1 2 22 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 ( Base ‘ ndx ) , ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) 〉 } ) ) |
| 24 | 0 23 | wceq | ⊢ End = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 ( Base ‘ ndx ) , ( 𝑥 ( Hom ‘ 𝑐 ) 𝑥 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝑐 ) 𝑥 ) 〉 } ) ) |