This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the application function. See brapply for its value. (Contributed by Scott Fenton, 12-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-apply | ⊢ Apply = ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | capply | ⊢ Apply | |
| 1 | cbigcup | ⊢ Bigcup | |
| 2 | 1 1 | ccom | ⊢ ( Bigcup ∘ Bigcup ) |
| 3 | cvv | ⊢ V | |
| 4 | 3 3 | cxp | ⊢ ( V × V ) |
| 5 | cep | ⊢ E | |
| 6 | 3 5 | ctxp | ⊢ ( V ⊗ E ) |
| 7 | csingles | ⊢ Singletons | |
| 8 | 5 7 | cres | ⊢ ( E ↾ Singletons ) |
| 9 | 8 3 | ctxp | ⊢ ( ( E ↾ Singletons ) ⊗ V ) |
| 10 | 6 9 | csymdif | ⊢ ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) |
| 11 | 10 | crn | ⊢ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) |
| 12 | 4 11 | cdif | ⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) |
| 13 | csingle | ⊢ Singleton | |
| 14 | cimg | ⊢ Img | |
| 15 | 13 14 | ccom | ⊢ ( Singleton ∘ Img ) |
| 16 | cid | ⊢ I | |
| 17 | 16 13 | cpprod | ⊢ pprod ( I , Singleton ) |
| 18 | 15 17 | ccom | ⊢ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) |
| 19 | 12 18 | ccom | ⊢ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) |
| 20 | 2 19 | ccom | ⊢ ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |
| 21 | 0 20 | wceq | ⊢ Apply = ( ( Bigcup ∘ Bigcup ) ∘ ( ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ↾ Singletons ) ⊗ V ) ) ) ∘ ( ( Singleton ∘ Img ) ∘ pprod ( I , Singleton ) ) ) ) |