This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dec5nprm.1 | |- A e. NN |
|
| Assertion | dec5nprm | |- -. ; A 5 e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5nprm.1 | |- A e. NN |
|
| 2 | 2nn | |- 2 e. NN |
|
| 3 | 2 1 | nnmulcli | |- ( 2 x. A ) e. NN |
| 4 | peano2nn | |- ( ( 2 x. A ) e. NN -> ( ( 2 x. A ) + 1 ) e. NN ) |
|
| 5 | 3 4 | ax-mp | |- ( ( 2 x. A ) + 1 ) e. NN |
| 6 | 5nn | |- 5 e. NN |
|
| 7 | 1nn0 | |- 1 e. NN0 |
|
| 8 | 1lt2 | |- 1 < 2 |
|
| 9 | 2 1 7 7 8 | numlti | |- 1 < ( ( 2 x. A ) + 1 ) |
| 10 | 1lt5 | |- 1 < 5 |
|
| 11 | 2 | nncni | |- 2 e. CC |
| 12 | 1 | nncni | |- A e. CC |
| 13 | 5cn | |- 5 e. CC |
|
| 14 | 11 12 13 | mul32i | |- ( ( 2 x. A ) x. 5 ) = ( ( 2 x. 5 ) x. A ) |
| 15 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 16 | 13 11 15 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
| 17 | 16 | oveq1i | |- ( ( 2 x. 5 ) x. A ) = ( ; 1 0 x. A ) |
| 18 | 14 17 | eqtri | |- ( ( 2 x. A ) x. 5 ) = ( ; 1 0 x. A ) |
| 19 | 13 | mullidi | |- ( 1 x. 5 ) = 5 |
| 20 | 18 19 | oveq12i | |- ( ( ( 2 x. A ) x. 5 ) + ( 1 x. 5 ) ) = ( ( ; 1 0 x. A ) + 5 ) |
| 21 | 3 | nncni | |- ( 2 x. A ) e. CC |
| 22 | ax-1cn | |- 1 e. CC |
|
| 23 | 21 22 13 | adddiri | |- ( ( ( 2 x. A ) + 1 ) x. 5 ) = ( ( ( 2 x. A ) x. 5 ) + ( 1 x. 5 ) ) |
| 24 | dfdec10 | |- ; A 5 = ( ( ; 1 0 x. A ) + 5 ) |
|
| 25 | 20 23 24 | 3eqtr4i | |- ( ( ( 2 x. A ) + 1 ) x. 5 ) = ; A 5 |
| 26 | 5 6 9 10 25 | nprmi | |- -. ; A 5 e. Prime |