This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cycle is a path starting and ending at its first vertex. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cyclispthon | |- ( F ( Cycles ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` 0 ) ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
|
| 2 | pthonpth | |- ( F ( Paths ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
|
| 3 | 1 2 | syl | |- ( F ( Cycles ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
| 4 | iscycl | |- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 5 | 4 | simprbi | |- ( F ( Cycles ` G ) P -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 6 | 5 | oveq2d | |- ( F ( Cycles ` G ) P -> ( ( P ` 0 ) ( PathsOn ` G ) ( P ` 0 ) ) = ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) ) |
| 7 | 6 | breqd | |- ( F ( Cycles ` G ) P -> ( F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` 0 ) ) P <-> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P ) ) |
| 8 | 3 7 | mpbird | |- ( F ( Cycles ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` 0 ) ) P ) |