This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry2.1 | |- G = ( F o. `' ( 1st |` ( _V X. { C } ) ) ) |
|
| Assertion | curry2val | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( G ` D ) = ( D F C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry2.1 | |- G = ( F o. `' ( 1st |` ( _V X. { C } ) ) ) |
|
| 2 | 1 | curry2 | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( x F C ) ) ) |
| 3 | 2 | fveq1d | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( G ` D ) = ( ( x e. A |-> ( x F C ) ) ` D ) ) |
| 4 | eqid | |- ( x e. A |-> ( x F C ) ) = ( x e. A |-> ( x F C ) ) |
|
| 5 | 4 | fvmptndm | |- ( -. D e. A -> ( ( x e. A |-> ( x F C ) ) ` D ) = (/) ) |
| 6 | 5 | adantl | |- ( ( F Fn ( A X. B ) /\ -. D e. A ) -> ( ( x e. A |-> ( x F C ) ) ` D ) = (/) ) |
| 7 | fndm | |- ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) |
|
| 8 | simpl | |- ( ( D e. A /\ C e. B ) -> D e. A ) |
|
| 9 | 8 | con3i | |- ( -. D e. A -> -. ( D e. A /\ C e. B ) ) |
| 10 | ndmovg | |- ( ( dom F = ( A X. B ) /\ -. ( D e. A /\ C e. B ) ) -> ( D F C ) = (/) ) |
|
| 11 | 7 9 10 | syl2an | |- ( ( F Fn ( A X. B ) /\ -. D e. A ) -> ( D F C ) = (/) ) |
| 12 | 6 11 | eqtr4d | |- ( ( F Fn ( A X. B ) /\ -. D e. A ) -> ( ( x e. A |-> ( x F C ) ) ` D ) = ( D F C ) ) |
| 13 | 12 | ex | |- ( F Fn ( A X. B ) -> ( -. D e. A -> ( ( x e. A |-> ( x F C ) ) ` D ) = ( D F C ) ) ) |
| 14 | 13 | adantr | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( -. D e. A -> ( ( x e. A |-> ( x F C ) ) ` D ) = ( D F C ) ) ) |
| 15 | oveq1 | |- ( x = D -> ( x F C ) = ( D F C ) ) |
|
| 16 | ovex | |- ( D F C ) e. _V |
|
| 17 | 15 4 16 | fvmpt | |- ( D e. A -> ( ( x e. A |-> ( x F C ) ) ` D ) = ( D F C ) ) |
| 18 | 14 17 | pm2.61d2 | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( ( x e. A |-> ( x F C ) ) ` D ) = ( D F C ) ) |
| 19 | 3 18 | eqtrd | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( G ` D ) = ( D F C ) ) |