This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution into a class abstraction. Version of csbopabgALT without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbopab | |- [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( w = A -> [_ w / x ]_ { <. y , z >. | ph } = [_ A / x ]_ { <. y , z >. | ph } ) |
|
| 2 | dfsbcq2 | |- ( w = A -> ( [ w / x ] ph <-> [. A / x ]. ph ) ) |
|
| 3 | 2 | opabbidv | |- ( w = A -> { <. y , z >. | [ w / x ] ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 4 | 1 3 | eqeq12d | |- ( w = A -> ( [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } <-> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) ) |
| 5 | vex | |- w e. _V |
|
| 6 | nfs1v | |- F/ x [ w / x ] ph |
|
| 7 | 6 | nfopab | |- F/_ x { <. y , z >. | [ w / x ] ph } |
| 8 | sbequ12 | |- ( x = w -> ( ph <-> [ w / x ] ph ) ) |
|
| 9 | 8 | opabbidv | |- ( x = w -> { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } ) |
| 10 | 5 7 9 | csbief | |- [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } |
| 11 | 4 10 | vtoclg | |- ( A e. _V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 12 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ { <. y , z >. | ph } = (/) ) |
|
| 13 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 14 | 13 | con3i | |- ( -. A e. _V -> -. [. A / x ]. ph ) |
| 15 | 14 | nexdv | |- ( -. A e. _V -> -. E. z [. A / x ]. ph ) |
| 16 | 15 | nexdv | |- ( -. A e. _V -> -. E. y E. z [. A / x ]. ph ) |
| 17 | opabn0 | |- ( { <. y , z >. | [. A / x ]. ph } =/= (/) <-> E. y E. z [. A / x ]. ph ) |
|
| 18 | 17 | necon1bbii | |- ( -. E. y E. z [. A / x ]. ph <-> { <. y , z >. | [. A / x ]. ph } = (/) ) |
| 19 | 16 18 | sylib | |- ( -. A e. _V -> { <. y , z >. | [. A / x ]. ph } = (/) ) |
| 20 | 12 19 | eqtr4d | |- ( -. A e. _V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 21 | 11 20 | pm2.61i | |- [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } |