This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution into a class abstraction. Version of csbopab with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007) (Proof shortened by Mario Carneiro, 17-Nov-2016) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbopabgALT | |- ( A e. V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( w = A -> [_ w / x ]_ { <. y , z >. | ph } = [_ A / x ]_ { <. y , z >. | ph } ) |
|
| 2 | dfsbcq2 | |- ( w = A -> ( [ w / x ] ph <-> [. A / x ]. ph ) ) |
|
| 3 | 2 | opabbidv | |- ( w = A -> { <. y , z >. | [ w / x ] ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 4 | 1 3 | eqeq12d | |- ( w = A -> ( [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } <-> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) ) |
| 5 | vex | |- w e. _V |
|
| 6 | nfs1v | |- F/ x [ w / x ] ph |
|
| 7 | 6 | nfopab | |- F/_ x { <. y , z >. | [ w / x ] ph } |
| 8 | sbequ12 | |- ( x = w -> ( ph <-> [ w / x ] ph ) ) |
|
| 9 | 8 | opabbidv | |- ( x = w -> { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } ) |
| 10 | 5 7 9 | csbief | |- [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } |
| 11 | 4 10 | vtoclg | |- ( A e. V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |