This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf for class substitution version. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbhypf.1 | ||
| csbhypf.2 | |||
| csbhypf.3 | |||
| Assertion | csbhypf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 | ||
| 2 | csbhypf.2 | ||
| 3 | csbhypf.3 | ||
| 4 | 1 | nfeq2 | |
| 5 | nfcsb1v | ||
| 6 | 5 2 | nfeq | |
| 7 | 4 6 | nfim | |
| 8 | eqeq1 | ||
| 9 | csbeq1a | ||
| 10 | 9 | eqeq1d | |
| 11 | 8 10 | imbi12d | |
| 12 | 7 11 3 | chvarfv |