This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcog | |- ( A e. V -> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( y = A -> [_ y / x ]_ ( B o. C ) = [_ A / x ]_ ( B o. C ) ) |
|
| 2 | csbeq1 | |- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
|
| 3 | csbeq1 | |- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
|
| 4 | 2 3 | coeq12d | |- ( y = A -> ( [_ y / x ]_ B o. [_ y / x ]_ C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) |
| 5 | 1 4 | eqeq12d | |- ( y = A -> ( [_ y / x ]_ ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) <-> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) ) |
| 6 | vex | |- y e. _V |
|
| 7 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 8 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 9 | 7 8 | nfco | |- F/_ x ( [_ y / x ]_ B o. [_ y / x ]_ C ) |
| 10 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 11 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 12 | 10 11 | coeq12d | |- ( x = y -> ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) ) |
| 13 | 6 9 12 | csbief | |- [_ y / x ]_ ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) |
| 14 | 5 13 | vtoclg | |- ( A e. V -> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) |