This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product (right-distributivity). Equation I3 of Ponnusamy p. 362. Complex version of ipdir . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphdir.P | |- .+ = ( +g ` W ) |
||
| Assertion | cphdir | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) + ( B ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphdir.P | |- .+ = ( +g ` W ) |
|
| 4 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
|
| 7 | 5 1 2 3 6 | ipdir | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 8 | 4 7 | sylan | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 9 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 10 | 5 | clmadd | |- ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) |
| 11 | 9 10 | syl | |- ( W e. CPreHil -> + = ( +g ` ( Scalar ` W ) ) ) |
| 12 | 11 | adantr | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> + = ( +g ` ( Scalar ` W ) ) ) |
| 13 | 12 | oveqd | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., C ) + ( B ., C ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 14 | 8 13 | eqtr4d | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) + ( B ., C ) ) ) |