This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossssid | |- ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iss2 | |- ( ,~ R C_ _I <-> ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
|
| 2 | refrelcoss2 | |- ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R /\ Rel ,~ R ) |
|
| 3 | 2 | simpli | |- ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R |
| 4 | eqss | |- ( ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R ) ) |
|
| 5 | 3 4 | mpbiran2 | |- ( ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
| 6 | 1 5 | bitri | |- ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |