This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossssid2 | |- ( ,~ R C_ _I <-> A. x A. y ( E. u ( u R x /\ u R y ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id | |- _I = { <. x , y >. | x = y } |
|
| 2 | 1 | sseq2i | |- ( ,~ R C_ _I <-> ,~ R C_ { <. x , y >. | x = y } ) |
| 3 | df-coss | |- ,~ R = { <. x , y >. | E. u ( u R x /\ u R y ) } |
|
| 4 | 3 | sseq1i | |- ( ,~ R C_ { <. x , y >. | x = y } <-> { <. x , y >. | E. u ( u R x /\ u R y ) } C_ { <. x , y >. | x = y } ) |
| 5 | ssopab2bw | |- ( { <. x , y >. | E. u ( u R x /\ u R y ) } C_ { <. x , y >. | x = y } <-> A. x A. y ( E. u ( u R x /\ u R y ) -> x = y ) ) |
|
| 6 | 2 4 5 | 3bitri | |- ( ,~ R C_ _I <-> A. x A. y ( E. u ( u R x /\ u R y ) -> x = y ) ) |