This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nelop | |- -. (/) e. <. A , B >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( (/) e. <. A , B >. -> (/) e. <. A , B >. ) |
|
| 2 | oprcl | |- ( (/) e. <. A , B >. -> ( A e. _V /\ B e. _V ) ) |
|
| 3 | dfopg | |- ( ( A e. _V /\ B e. _V ) -> <. A , B >. = { { A } , { A , B } } ) |
|
| 4 | 2 3 | syl | |- ( (/) e. <. A , B >. -> <. A , B >. = { { A } , { A , B } } ) |
| 5 | 1 4 | eleqtrd | |- ( (/) e. <. A , B >. -> (/) e. { { A } , { A , B } } ) |
| 6 | elpri | |- ( (/) e. { { A } , { A , B } } -> ( (/) = { A } \/ (/) = { A , B } ) ) |
|
| 7 | 5 6 | syl | |- ( (/) e. <. A , B >. -> ( (/) = { A } \/ (/) = { A , B } ) ) |
| 8 | 2 | simpld | |- ( (/) e. <. A , B >. -> A e. _V ) |
| 9 | 8 | snn0d | |- ( (/) e. <. A , B >. -> { A } =/= (/) ) |
| 10 | 9 | necomd | |- ( (/) e. <. A , B >. -> (/) =/= { A } ) |
| 11 | prnzg | |- ( A e. _V -> { A , B } =/= (/) ) |
|
| 12 | 8 11 | syl | |- ( (/) e. <. A , B >. -> { A , B } =/= (/) ) |
| 13 | 12 | necomd | |- ( (/) e. <. A , B >. -> (/) =/= { A , B } ) |
| 14 | 10 13 | jca | |- ( (/) e. <. A , B >. -> ( (/) =/= { A } /\ (/) =/= { A , B } ) ) |
| 15 | neanior | |- ( ( (/) =/= { A } /\ (/) =/= { A , B } ) <-> -. ( (/) = { A } \/ (/) = { A , B } ) ) |
|
| 16 | 14 15 | sylib | |- ( (/) e. <. A , B >. -> -. ( (/) = { A } \/ (/) = { A , B } ) ) |
| 17 | 7 16 | pm2.65i | |- -. (/) e. <. A , B >. |