This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmdvds1 | |- ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coprmgcdb | |- ( ( F e. NN /\ G e. NN ) -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) <-> ( F gcd G ) = 1 ) ) |
|
| 2 | breq1 | |- ( i = I -> ( i || F <-> I || F ) ) |
|
| 3 | breq1 | |- ( i = I -> ( i || G <-> I || G ) ) |
|
| 4 | 2 3 | anbi12d | |- ( i = I -> ( ( i || F /\ i || G ) <-> ( I || F /\ I || G ) ) ) |
| 5 | eqeq1 | |- ( i = I -> ( i = 1 <-> I = 1 ) ) |
|
| 6 | 4 5 | imbi12d | |- ( i = I -> ( ( ( i || F /\ i || G ) -> i = 1 ) <-> ( ( I || F /\ I || G ) -> I = 1 ) ) ) |
| 7 | 6 | rspcv | |- ( I e. NN -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> ( ( I || F /\ I || G ) -> I = 1 ) ) ) |
| 8 | 7 | com23 | |- ( I e. NN -> ( ( I || F /\ I || G ) -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> I = 1 ) ) ) |
| 9 | 8 | 3impib | |- ( ( I e. NN /\ I || F /\ I || G ) -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> I = 1 ) ) |
| 10 | 9 | com12 | |- ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) |
| 11 | 1 10 | biimtrrdi | |- ( ( F e. NN /\ G e. NN ) -> ( ( F gcd G ) = 1 -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) ) |
| 12 | 11 | 3impia | |- ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) |