This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffn.o | |- O = ( comf ` C ) |
|
| comfffn.b | |- B = ( Base ` C ) |
||
| Assertion | comfffn | |- O Fn ( ( B X. B ) X. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffn.o | |- O = ( comf ` C ) |
|
| 2 | comfffn.b | |- B = ( Base ` C ) |
|
| 3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 4 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 5 | 1 2 3 4 | comfffval | |- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x ( comp ` C ) y ) f ) ) ) |
| 6 | ovex | |- ( ( 2nd ` x ) ( Hom ` C ) y ) e. _V |
|
| 7 | fvex | |- ( ( Hom ` C ) ` x ) e. _V |
|
| 8 | 6 7 | mpoex | |- ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x ( comp ` C ) y ) f ) ) e. _V |
| 9 | 5 8 | fnmpoi | |- O Fn ( ( B X. B ) X. B ) |