This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coffth.f | |- ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
|
| coffth.g | |- ( ph -> G e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
||
| Assertion | coffth | |- ( ph -> ( G o.func F ) e. ( ( C Full E ) i^i ( C Faith E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coffth.f | |- ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
|
| 2 | coffth.g | |- ( ph -> G e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 3 | 1 | elin1d | |- ( ph -> F e. ( C Full D ) ) |
| 4 | 2 | elin1d | |- ( ph -> G e. ( D Full E ) ) |
| 5 | 3 4 | cofull | |- ( ph -> ( G o.func F ) e. ( C Full E ) ) |
| 6 | 1 | elin2d | |- ( ph -> F e. ( C Faith D ) ) |
| 7 | 2 | elin2d | |- ( ph -> G e. ( D Faith E ) ) |
| 8 | 6 7 | cofth | |- ( ph -> ( G o.func F ) e. ( C Faith E ) ) |
| 9 | 5 8 | elind | |- ( ph -> ( G o.func F ) e. ( ( C Full E ) i^i ( C Faith E ) ) ) |