This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnfldbas as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 6-Oct-2015) (Revised by Thierry Arnoux, 17-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldbasOLD | |- CC = ( Base ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | |- CC e. _V |
|
| 2 | cnfldstrOLD | |- CCfld Struct <. 1 , ; 1 3 >. |
|
| 3 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 4 | snsstp1 | |- { <. ( Base ` ndx ) , CC >. } C_ { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
|
| 5 | ssun1 | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } C_ ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
|
| 6 | ssun1 | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 7 | dfcnfldOLD | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 8 | 6 7 | sseqtrri | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) C_ CCfld |
| 9 | 5 8 | sstri | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } C_ CCfld |
| 10 | 4 9 | sstri | |- { <. ( Base ` ndx ) , CC >. } C_ CCfld |
| 11 | 2 3 10 | strfv | |- ( CC e. _V -> CC = ( Base ` CCfld ) ) |
| 12 | 1 11 | ax-mp | |- CC = ( Base ` CCfld ) |