This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnambpcma | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + C ) - A ) = ( C - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
| 3 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 4 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 5 | 2 3 4 | addsubd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + C ) - A ) = ( ( ( A - B ) - A ) + C ) ) |
| 6 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 7 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 8 | 6 7 6 | 3jca | |- ( ( A e. CC /\ B e. CC ) -> ( A e. CC /\ B e. CC /\ A e. CC ) ) |
| 9 | 8 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A e. CC /\ B e. CC /\ A e. CC ) ) |
| 10 | sub32 | |- ( ( A e. CC /\ B e. CC /\ A e. CC ) -> ( ( A - B ) - A ) = ( ( A - A ) - B ) ) |
|
| 11 | 9 10 | syl | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - A ) = ( ( A - A ) - B ) ) |
| 12 | 11 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - A ) + C ) = ( ( ( A - A ) - B ) + C ) ) |
| 13 | subcl | |- ( ( A e. CC /\ A e. CC ) -> ( A - A ) e. CC ) |
|
| 14 | 13 | anidms | |- ( A e. CC -> ( A - A ) e. CC ) |
| 15 | 14 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - A ) e. CC ) |
| 16 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 17 | 15 16 3 | subadd23d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - A ) - B ) + C ) = ( ( A - A ) + ( C - B ) ) ) |
| 18 | subid | |- ( A e. CC -> ( A - A ) = 0 ) |
|
| 19 | 18 | oveq1d | |- ( A e. CC -> ( ( A - A ) + ( C - B ) ) = ( 0 + ( C - B ) ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - A ) + ( C - B ) ) = ( 0 + ( C - B ) ) ) |
| 21 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 22 | 21 | ancoms | |- ( ( B e. CC /\ C e. CC ) -> ( C - B ) e. CC ) |
| 23 | 22 | addlidd | |- ( ( B e. CC /\ C e. CC ) -> ( 0 + ( C - B ) ) = ( C - B ) ) |
| 24 | 23 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( 0 + ( C - B ) ) = ( C - B ) ) |
| 25 | 17 20 24 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - A ) - B ) + C ) = ( C - B ) ) |
| 26 | 5 12 25 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + C ) - A ) = ( C - B ) ) |