This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmnbascntr.b | |- B = ( Base ` G ) |
|
| cmnbascntr.z | |- Z = ( Cntr ` G ) |
||
| Assertion | cmnbascntr | |- ( G e. CMnd -> B = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnbascntr.b | |- B = ( Base ` G ) |
|
| 2 | cmnbascntr.z | |- Z = ( Cntr ` G ) |
|
| 3 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 4 | 1 3 | cntrval | |- ( ( Cntz ` G ) ` B ) = ( Cntr ` G ) |
| 5 | ssid | |- B C_ B |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 3 | cntzval | |- ( B C_ B -> ( ( Cntz ` G ) ` B ) = { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } ) |
| 8 | 5 7 | ax-mp | |- ( ( Cntz ` G ) ` B ) = { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } |
| 9 | 2 4 8 | 3eqtr2i | |- Z = { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } |
| 10 | 1 6 | cmncom | |- ( ( G e. CMnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 11 | 10 | 3expa | |- ( ( ( G e. CMnd /\ x e. B ) /\ y e. B ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 12 | 11 | ralrimiva | |- ( ( G e. CMnd /\ x e. B ) -> A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 13 | 12 | rabeqcda | |- ( G e. CMnd -> { x e. B | A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) } = B ) |
| 14 | 9 13 | eqtr2id | |- ( G e. CMnd -> B = Z ) |