This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | |- A e. CH |
|
| chjcl.2 | |- B e. CH |
||
| Assertion | chcon3i | |- ( A = B <-> ( _|_ ` B ) = ( _|_ ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | |- A e. CH |
|
| 2 | chjcl.2 | |- B e. CH |
|
| 3 | 1 2 | chsscon3i | |- ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) |
| 4 | 2 1 | chsscon3i | |- ( B C_ A <-> ( _|_ ` A ) C_ ( _|_ ` B ) ) |
| 5 | 3 4 | anbi12i | |- ( ( A C_ B /\ B C_ A ) <-> ( ( _|_ ` B ) C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ ( _|_ ` B ) ) ) |
| 6 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 7 | eqss | |- ( ( _|_ ` B ) = ( _|_ ` A ) <-> ( ( _|_ ` B ) C_ ( _|_ ` A ) /\ ( _|_ ` A ) C_ ( _|_ ` B ) ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( A = B <-> ( _|_ ` B ) = ( _|_ ` A ) ) |