This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
climeq
Metamath Proof Explorer
Description: Two functions that are eventually equal to one another have the same
limit. (Contributed by Mario Carneiro , 5-Nov-2013) (Revised by Mario
Carneiro , 31-Jan-2014)
Ref
Expression
Hypotheses
climeq.1
⊢ Z = ℤ ≥ M
climeq.2
⊢ φ → F ∈ V
climeq.3
⊢ φ → G ∈ W
climeq.5
⊢ φ → M ∈ ℤ
climeq.6
⊢ φ ∧ k ∈ Z → F ⁡ k = G ⁡ k
Assertion
climeq
⊢ φ → F ⇝ A ↔ G ⇝ A
Proof
Step
Hyp
Ref
Expression
1
climeq.1
⊢ Z = ℤ ≥ M
2
climeq.2
⊢ φ → F ∈ V
3
climeq.3
⊢ φ → G ∈ W
4
climeq.5
⊢ φ → M ∈ ℤ
5
climeq.6
⊢ φ ∧ k ∈ Z → F ⁡ k = G ⁡ k
6
1 4 2 5
clim2
⊢ φ → F ⇝ A ↔ A ∈ ℂ ∧ ∀ x ∈ ℝ + ∃ y ∈ Z ∀ k ∈ ℤ ≥ y G ⁡ k ∈ ℂ ∧ G ⁡ k − A < x
7
eqidd
⊢ φ ∧ k ∈ Z → G ⁡ k = G ⁡ k
8
1 4 3 7
clim2
⊢ φ → G ⇝ A ↔ A ∈ ℂ ∧ ∀ x ∈ ℝ + ∃ y ∈ Z ∀ k ∈ ℤ ≥ y G ⁡ k ∈ ℂ ∧ G ⁡ k − A < x
9
6 8
bitr4d
⊢ φ → F ⇝ A ↔ G ⇝ A