This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatglbcl.b | |- B = ( Base ` K ) |
|
| clatglbcl.g | |- G = ( glb ` K ) |
||
| Assertion | clatglbcl2 | |- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglbcl.b | |- B = ( Base ` K ) |
|
| 2 | clatglbcl.g | |- G = ( glb ` K ) |
|
| 3 | 1 | fvexi | |- B e. _V |
| 4 | 3 | elpw2 | |- ( S e. ~P B <-> S C_ B ) |
| 5 | 4 | biimpri | |- ( S C_ B -> S e. ~P B ) |
| 6 | 5 | adantl | |- ( ( K e. CLat /\ S C_ B ) -> S e. ~P B ) |
| 7 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 8 | 1 7 2 | isclat | |- ( K e. CLat <-> ( K e. Poset /\ ( dom ( lub ` K ) = ~P B /\ dom G = ~P B ) ) ) |
| 9 | simprr | |- ( ( K e. Poset /\ ( dom ( lub ` K ) = ~P B /\ dom G = ~P B ) ) -> dom G = ~P B ) |
|
| 10 | 8 9 | sylbi | |- ( K e. CLat -> dom G = ~P B ) |
| 11 | 10 | adantr | |- ( ( K e. CLat /\ S C_ B ) -> dom G = ~P B ) |
| 12 | 6 11 | eleqtrrd | |- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |