This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A consequence of relative atomicity. (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrelat2 | |- ( ( A e. CH /\ B e. CH ) -> ( -. A C_ B <-> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A C_ B <-> if ( A e. CH , A , ~H ) C_ B ) ) |
|
| 2 | 1 | notbid | |- ( A = if ( A e. CH , A , ~H ) -> ( -. A C_ B <-> -. if ( A e. CH , A , ~H ) C_ B ) ) |
| 3 | sseq2 | |- ( A = if ( A e. CH , A , ~H ) -> ( x C_ A <-> x C_ if ( A e. CH , A , ~H ) ) ) |
|
| 4 | 3 | anbi1d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( x C_ A /\ -. x C_ B ) <-> ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ B ) ) ) |
| 5 | 4 | rexbidv | |- ( A = if ( A e. CH , A , ~H ) -> ( E. x e. HAtoms ( x C_ A /\ -. x C_ B ) <-> E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ B ) ) ) |
| 6 | 2 5 | bibi12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( -. A C_ B <-> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) <-> ( -. if ( A e. CH , A , ~H ) C_ B <-> E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ B ) ) ) ) |
| 7 | sseq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) C_ B <-> if ( A e. CH , A , ~H ) C_ if ( B e. CH , B , ~H ) ) ) |
|
| 8 | 7 | notbid | |- ( B = if ( B e. CH , B , ~H ) -> ( -. if ( A e. CH , A , ~H ) C_ B <-> -. if ( A e. CH , A , ~H ) C_ if ( B e. CH , B , ~H ) ) ) |
| 9 | sseq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( x C_ B <-> x C_ if ( B e. CH , B , ~H ) ) ) |
|
| 10 | 9 | notbid | |- ( B = if ( B e. CH , B , ~H ) -> ( -. x C_ B <-> -. x C_ if ( B e. CH , B , ~H ) ) ) |
| 11 | 10 | anbi2d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ B ) <-> ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ if ( B e. CH , B , ~H ) ) ) ) |
| 12 | 11 | rexbidv | |- ( B = if ( B e. CH , B , ~H ) -> ( E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ B ) <-> E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ if ( B e. CH , B , ~H ) ) ) ) |
| 13 | 8 12 | bibi12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( -. if ( A e. CH , A , ~H ) C_ B <-> E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ B ) ) <-> ( -. if ( A e. CH , A , ~H ) C_ if ( B e. CH , B , ~H ) <-> E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ if ( B e. CH , B , ~H ) ) ) ) ) |
| 14 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 15 | ifchhv | |- if ( B e. CH , B , ~H ) e. CH |
|
| 16 | 14 15 | chrelat2i | |- ( -. if ( A e. CH , A , ~H ) C_ if ( B e. CH , B , ~H ) <-> E. x e. HAtoms ( x C_ if ( A e. CH , A , ~H ) /\ -. x C_ if ( B e. CH , B , ~H ) ) ) |
| 17 | 6 13 16 | dedth2h | |- ( ( A e. CH /\ B e. CH ) -> ( -. A C_ B <-> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) ) |