This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chdmm4 | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | |- ( B e. CH -> ( _|_ ` B ) e. CH ) |
|
| 2 | chdmm2 | |- ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH ( _|_ ` ( _|_ ` B ) ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH ( _|_ ` ( _|_ ` B ) ) ) ) |
| 4 | ococ | |- ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B ) |
|
| 5 | 4 | adantl | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` B ) ) = B ) |
| 6 | 5 | oveq2d | |- ( ( A e. CH /\ B e. CH ) -> ( A vH ( _|_ ` ( _|_ ` B ) ) ) = ( A vH B ) ) |
| 7 | 3 6 | eqtrd | |- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) ) |