This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsexg.1 | |- ( x = A -> ch ) |
|
| cgsexg.2 | |- ( ch -> ( ph <-> ps ) ) |
||
| Assertion | cgsexg | |- ( A e. V -> ( E. x ( ch /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsexg.1 | |- ( x = A -> ch ) |
|
| 2 | cgsexg.2 | |- ( ch -> ( ph <-> ps ) ) |
|
| 3 | 2 | biimpa | |- ( ( ch /\ ph ) -> ps ) |
| 4 | 3 | exlimiv | |- ( E. x ( ch /\ ph ) -> ps ) |
| 5 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 6 | 1 | eximi | |- ( E. x x = A -> E. x ch ) |
| 7 | 5 6 | syl | |- ( A e. V -> E. x ch ) |
| 8 | 2 | biimprcd | |- ( ps -> ( ch -> ph ) ) |
| 9 | 8 | ancld | |- ( ps -> ( ch -> ( ch /\ ph ) ) ) |
| 10 | 9 | eximdv | |- ( ps -> ( E. x ch -> E. x ( ch /\ ph ) ) ) |
| 11 | 7 10 | syl5com | |- ( A e. V -> ( ps -> E. x ( ch /\ ph ) ) ) |
| 12 | 4 11 | impbid2 | |- ( A e. V -> ( E. x ( ch /\ ph ) <-> ps ) ) |