This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil . (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilucfil2 | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> ( C e. ( fBas ` X ) /\ A. x e. RR+ E. y e. C ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metuval | |- ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
|
| 2 | 1 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
| 3 | 2 | fveq2d | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( CauFilU ` ( metUnif ` D ) ) = ( CauFilU ` ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) ) |
| 4 | 3 | eleq2d | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> C e. ( CauFilU ` ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) ) ) |
| 5 | oveq2 | |- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
|
| 6 | 5 | imaeq2d | |- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 7 | 6 | cbvmptv | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 8 | 7 | rneqi | |- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 9 | 8 | cfilucfil | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( C e. ( CauFilU ` ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) <-> ( C e. ( fBas ` X ) /\ A. x e. RR+ E. y e. C ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) ) |
| 10 | 4 9 | bitrd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> ( C e. ( fBas ` X ) /\ A. x e. RR+ E. y e. C ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) ) |