This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ceqsrexv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | ceqsrexbv | |- ( E. x e. B ( x = A /\ ph ) <-> ( A e. B /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsrexv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | r19.42v | |- ( E. x e. B ( A e. B /\ ( x = A /\ ph ) ) <-> ( A e. B /\ E. x e. B ( x = A /\ ph ) ) ) |
|
| 3 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 4 | 3 | adantr | |- ( ( x = A /\ ph ) -> ( x e. B <-> A e. B ) ) |
| 5 | 4 | pm5.32ri | |- ( ( x e. B /\ ( x = A /\ ph ) ) <-> ( A e. B /\ ( x = A /\ ph ) ) ) |
| 6 | 5 | bicomi | |- ( ( A e. B /\ ( x = A /\ ph ) ) <-> ( x e. B /\ ( x = A /\ ph ) ) ) |
| 7 | 6 | baib | |- ( x e. B -> ( ( A e. B /\ ( x = A /\ ph ) ) <-> ( x = A /\ ph ) ) ) |
| 8 | 7 | rexbiia | |- ( E. x e. B ( A e. B /\ ( x = A /\ ph ) ) <-> E. x e. B ( x = A /\ ph ) ) |
| 9 | 1 | ceqsrexv | |- ( A e. B -> ( E. x e. B ( x = A /\ ph ) <-> ps ) ) |
| 10 | 9 | pm5.32i | |- ( ( A e. B /\ E. x e. B ( x = A /\ ph ) ) <-> ( A e. B /\ ps ) ) |
| 11 | 2 8 10 | 3bitr3i | |- ( E. x e. B ( x = A /\ ph ) <-> ( A e. B /\ ps ) ) |