This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opth -like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatopth2 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( ( A ++ B ) = ( C ++ D ) -> ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) ) |
|
| 2 | ccatlen | |- ( ( A e. Word X /\ B e. Word X ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 4 | simp3 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` B ) = ( # ` D ) ) |
|
| 5 | 4 | oveq2d | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( ( # ` A ) + ( # ` D ) ) ) |
| 6 | 3 5 | eqtrd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` D ) ) ) |
| 7 | ccatlen | |- ( ( C e. Word X /\ D e. Word X ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) ) ) |
| 10 | simp1l | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> A e. Word X ) |
|
| 11 | lencl | |- ( A e. Word X -> ( # ` A ) e. NN0 ) |
|
| 12 | 10 11 | syl | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. NN0 ) |
| 13 | 12 | nn0cnd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. CC ) |
| 14 | simp2l | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> C e. Word X ) |
|
| 15 | lencl | |- ( C e. Word X -> ( # ` C ) e. NN0 ) |
|
| 16 | 14 15 | syl | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. NN0 ) |
| 17 | 16 | nn0cnd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. CC ) |
| 18 | simp2r | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> D e. Word X ) |
|
| 19 | lencl | |- ( D e. Word X -> ( # ` D ) e. NN0 ) |
|
| 20 | 18 19 | syl | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. NN0 ) |
| 21 | 20 | nn0cnd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. CC ) |
| 22 | 13 17 21 | addcan2d | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) <-> ( # ` A ) = ( # ` C ) ) ) |
| 23 | 9 22 | bitrd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( # ` A ) = ( # ` C ) ) ) |
| 24 | 1 23 | imbitrid | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( # ` A ) = ( # ` C ) ) ) |
| 25 | ccatopth | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |
|
| 26 | 25 | biimpd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
| 27 | 26 | 3expia | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( # ` A ) = ( # ` C ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) ) |
| 28 | 27 | com23 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) |
| 29 | 28 | 3adant3 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) |
| 30 | 24 29 | mpdd | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
| 31 | oveq12 | |- ( ( A = C /\ B = D ) -> ( A ++ B ) = ( C ++ D ) ) |
|
| 32 | 30 31 | impbid1 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |