This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opth -like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatopth2 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) ) | |
| 2 | ccatlen | ⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 4 | simp3 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) | |
| 5 | 4 | oveq2d | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) ) |
| 6 | 3 5 | eqtrd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) ) |
| 7 | ccatlen | ⊢ ( ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) → ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) ↔ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ) ) |
| 10 | simp1l | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → 𝐴 ∈ Word 𝑋 ) | |
| 11 | lencl | ⊢ ( 𝐴 ∈ Word 𝑋 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 13 | 12 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 14 | simp2l | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → 𝐶 ∈ Word 𝑋 ) | |
| 15 | lencl | ⊢ ( 𝐶 ∈ Word 𝑋 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 17 | 16 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
| 18 | simp2r | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → 𝐷 ∈ Word 𝑋 ) | |
| 19 | lencl | ⊢ ( 𝐷 ∈ Word 𝑋 → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
| 21 | 20 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐷 ) ∈ ℂ ) |
| 22 | 13 17 21 | addcan2d | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) ) |
| 23 | 9 22 | bitrd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) ) |
| 24 | 1 23 | imbitrid | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) ) |
| 25 | ccatopth | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
| 26 | 25 | biimpd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 27 | 26 | 3expia | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 28 | 27 | com23 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 29 | 28 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 30 | 24 29 | mpdd | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 31 | oveq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ) | |
| 32 | 30 31 | impbid1 | ⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |