This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cbvrabw as of 19-Jul-2025. (Contributed by Andrew Salmon, 11-Jul-2011) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrabw.1 | |- F/_ x A |
|
| cbvrabw.2 | |- F/_ y A |
||
| cbvrabw.3 | |- F/ y ph |
||
| cbvrabw.4 | |- F/ x ps |
||
| cbvrabw.5 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvrabwOLD | |- { x e. A | ph } = { y e. A | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrabw.1 | |- F/_ x A |
|
| 2 | cbvrabw.2 | |- F/_ y A |
|
| 3 | cbvrabw.3 | |- F/ y ph |
|
| 4 | cbvrabw.4 | |- F/ x ps |
|
| 5 | cbvrabw.5 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 6 | nfv | |- F/ z ( x e. A /\ ph ) |
|
| 7 | 1 | nfcri | |- F/ x z e. A |
| 8 | nfs1v | |- F/ x [ z / x ] ph |
|
| 9 | 7 8 | nfan | |- F/ x ( z e. A /\ [ z / x ] ph ) |
| 10 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 11 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 12 | 10 11 | anbi12d | |- ( x = z -> ( ( x e. A /\ ph ) <-> ( z e. A /\ [ z / x ] ph ) ) ) |
| 13 | 6 9 12 | cbvabw | |- { x | ( x e. A /\ ph ) } = { z | ( z e. A /\ [ z / x ] ph ) } |
| 14 | 2 | nfcri | |- F/ y z e. A |
| 15 | 3 | nfsbv | |- F/ y [ z / x ] ph |
| 16 | 14 15 | nfan | |- F/ y ( z e. A /\ [ z / x ] ph ) |
| 17 | nfv | |- F/ z ( y e. A /\ ps ) |
|
| 18 | eleq1w | |- ( z = y -> ( z e. A <-> y e. A ) ) |
|
| 19 | sbequ | |- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
|
| 20 | 4 5 | sbiev | |- ( [ y / x ] ph <-> ps ) |
| 21 | 19 20 | bitrdi | |- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
| 22 | 18 21 | anbi12d | |- ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) |
| 23 | 16 17 22 | cbvabw | |- { z | ( z e. A /\ [ z / x ] ph ) } = { y | ( y e. A /\ ps ) } |
| 24 | 13 23 | eqtri | |- { x | ( x e. A /\ ph ) } = { y | ( y e. A /\ ps ) } |
| 25 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 26 | df-rab | |- { y e. A | ps } = { y | ( y e. A /\ ps ) } |
|
| 27 | 24 25 26 | 3eqtr4i | |- { x e. A | ph } = { y e. A | ps } |