This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimdelov.1 | |- ( ph -> C e. ( A F B ) ) |
|
| elimdelov.2 | |- Z e. ( X F Y ) |
||
| Assertion | elimdelov | |- if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimdelov.1 | |- ( ph -> C e. ( A F B ) ) |
|
| 2 | elimdelov.2 | |- Z e. ( X F Y ) |
|
| 3 | iftrue | |- ( ph -> if ( ph , C , Z ) = C ) |
|
| 4 | iftrue | |- ( ph -> if ( ph , A , X ) = A ) |
|
| 5 | iftrue | |- ( ph -> if ( ph , B , Y ) = B ) |
|
| 6 | 4 5 | oveq12d | |- ( ph -> ( if ( ph , A , X ) F if ( ph , B , Y ) ) = ( A F B ) ) |
| 7 | 1 3 6 | 3eltr4d | |- ( ph -> if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) ) |
| 8 | iffalse | |- ( -. ph -> if ( ph , C , Z ) = Z ) |
|
| 9 | 8 2 | eqeltrdi | |- ( -. ph -> if ( ph , C , Z ) e. ( X F Y ) ) |
| 10 | iffalse | |- ( -. ph -> if ( ph , A , X ) = X ) |
|
| 11 | iffalse | |- ( -. ph -> if ( ph , B , Y ) = Y ) |
|
| 12 | 10 11 | oveq12d | |- ( -. ph -> ( if ( ph , A , X ) F if ( ph , B , Y ) ) = ( X F Y ) ) |
| 13 | 9 12 | eleqtrrd | |- ( -. ph -> if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) ) |
| 14 | 7 13 | pm2.61i | |- if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) |