This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvmow , cbvmovw when possible. (Contributed by NM, 9-Mar-1995) (Revised by Andrew Salmon, 8-Jun-2011) (Proof shortened by Wolf Lammen, 4-Jan-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmo.1 | |- F/ y ph |
|
| cbvmo.2 | |- F/ x ps |
||
| cbvmo.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvmo | |- ( E* x ph <-> E* y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmo.1 | |- F/ y ph |
|
| 2 | cbvmo.2 | |- F/ x ps |
|
| 3 | cbvmo.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | 1 | sb8mo | |- ( E* x ph <-> E* y [ y / x ] ph ) |
| 5 | 2 3 | sbie | |- ( [ y / x ] ph <-> ps ) |
| 6 | 5 | mobii | |- ( E* y [ y / x ] ph <-> E* y ps ) |
| 7 | 4 6 | bitri | |- ( E* x ph <-> E* y ps ) |