This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate construction of the preorder induced by a category. See catprs2 for details. See also catprsc for a different construction. The two constructions are different because df-cat does not require the domain of H to be B X. B . (Contributed by Zhi Wang, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | catprsc2.1 | |- ( ph -> .<_ = { <. x , y >. | ( x H y ) =/= (/) } ) |
|
| Assertion | catprsc2 | |- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprsc2.1 | |- ( ph -> .<_ = { <. x , y >. | ( x H y ) =/= (/) } ) |
|
| 2 | 1 | breqd | |- ( ph -> ( z .<_ w <-> z { <. x , y >. | ( x H y ) =/= (/) } w ) ) |
| 3 | vex | |- z e. _V |
|
| 4 | vex | |- w e. _V |
|
| 5 | oveq12 | |- ( ( x = z /\ y = w ) -> ( x H y ) = ( z H w ) ) |
|
| 6 | 5 | neeq1d | |- ( ( x = z /\ y = w ) -> ( ( x H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) |
| 7 | eqid | |- { <. x , y >. | ( x H y ) =/= (/) } = { <. x , y >. | ( x H y ) =/= (/) } |
|
| 8 | 3 4 6 7 | braba | |- ( z { <. x , y >. | ( x H y ) =/= (/) } w <-> ( z H w ) =/= (/) ) |
| 9 | 2 8 | bitrdi | |- ( ph -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
| 11 | 10 | ralrimivva | |- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |