This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovdig.1 | |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
|
| Assertion | caovdig | |- ( ( ph /\ ( A e. K /\ B e. S /\ C e. S ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdig.1 | |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
|
| 2 | 1 | ralrimivvva | |- ( ph -> A. x e. K A. y e. S A. z e. S ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
| 3 | oveq1 | |- ( x = A -> ( x G ( y F z ) ) = ( A G ( y F z ) ) ) |
|
| 4 | oveq1 | |- ( x = A -> ( x G y ) = ( A G y ) ) |
|
| 5 | oveq1 | |- ( x = A -> ( x G z ) = ( A G z ) ) |
|
| 6 | 4 5 | oveq12d | |- ( x = A -> ( ( x G y ) H ( x G z ) ) = ( ( A G y ) H ( A G z ) ) ) |
| 7 | 3 6 | eqeq12d | |- ( x = A -> ( ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) <-> ( A G ( y F z ) ) = ( ( A G y ) H ( A G z ) ) ) ) |
| 8 | oveq1 | |- ( y = B -> ( y F z ) = ( B F z ) ) |
|
| 9 | 8 | oveq2d | |- ( y = B -> ( A G ( y F z ) ) = ( A G ( B F z ) ) ) |
| 10 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 11 | 10 | oveq1d | |- ( y = B -> ( ( A G y ) H ( A G z ) ) = ( ( A G B ) H ( A G z ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( y = B -> ( ( A G ( y F z ) ) = ( ( A G y ) H ( A G z ) ) <-> ( A G ( B F z ) ) = ( ( A G B ) H ( A G z ) ) ) ) |
| 13 | oveq2 | |- ( z = C -> ( B F z ) = ( B F C ) ) |
|
| 14 | 13 | oveq2d | |- ( z = C -> ( A G ( B F z ) ) = ( A G ( B F C ) ) ) |
| 15 | oveq2 | |- ( z = C -> ( A G z ) = ( A G C ) ) |
|
| 16 | 15 | oveq2d | |- ( z = C -> ( ( A G B ) H ( A G z ) ) = ( ( A G B ) H ( A G C ) ) ) |
| 17 | 14 16 | eqeq12d | |- ( z = C -> ( ( A G ( B F z ) ) = ( ( A G B ) H ( A G z ) ) <-> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) ) |
| 18 | 7 12 17 | rspc3v | |- ( ( A e. K /\ B e. S /\ C e. S ) -> ( A. x e. K A. y e. S A. z e. S ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) ) |
| 19 | 2 18 | mpan9 | |- ( ( ph /\ ( A e. K /\ B e. S /\ C e. S ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |