This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
| caovcand.2 | |- ( ph -> A e. T ) |
||
| caovcand.3 | |- ( ph -> B e. S ) |
||
| caovcand.4 | |- ( ph -> C e. S ) |
||
| caovcanrd.5 | |- ( ph -> A e. S ) |
||
| caovcanrd.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
| Assertion | caovcanrd | |- ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
| 2 | caovcand.2 | |- ( ph -> A e. T ) |
|
| 3 | caovcand.3 | |- ( ph -> B e. S ) |
|
| 4 | caovcand.4 | |- ( ph -> C e. S ) |
|
| 5 | caovcanrd.5 | |- ( ph -> A e. S ) |
|
| 6 | caovcanrd.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
| 7 | 6 5 3 | caovcomd | |- ( ph -> ( A F B ) = ( B F A ) ) |
| 8 | 6 5 4 | caovcomd | |- ( ph -> ( A F C ) = ( C F A ) ) |
| 9 | 7 8 | eqeq12d | |- ( ph -> ( ( A F B ) = ( A F C ) <-> ( B F A ) = ( C F A ) ) ) |
| 10 | 1 2 3 4 | caovcand | |- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |
| 11 | 9 10 | bitr3d | |- ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) ) |