This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovcang.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| caovcand.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | ||
| caovcand.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| caovcand.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
| caovcanrd.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| caovcanrd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) ) | ||
| Assertion | caovcanrd | ⊢ ( 𝜑 → ( ( 𝐵 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcang.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 2 | caovcand.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | |
| 3 | caovcand.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 4 | caovcand.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| 5 | caovcanrd.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 6 | caovcanrd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) ) | |
| 7 | 6 5 3 | caovcomd | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) ) |
| 8 | 6 5 4 | caovcomd | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐶 ) = ( 𝐶 𝐹 𝐴 ) ) |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ ( 𝐵 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ) ) |
| 10 | 1 2 3 4 | caovcand | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| 11 | 9 10 | bitr3d | ⊢ ( 𝜑 → ( ( 𝐵 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ↔ 𝐵 = 𝐶 ) ) |