This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
| Assertion | caovcang | |- ( ( ph /\ ( A e. T /\ B e. S /\ C e. S ) ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
| 2 | 1 | ralrimivvva | |- ( ph -> A. x e. T A. y e. S A. z e. S ( ( x F y ) = ( x F z ) <-> y = z ) ) |
| 3 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 4 | oveq1 | |- ( x = A -> ( x F z ) = ( A F z ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( x = A -> ( ( x F y ) = ( x F z ) <-> ( A F y ) = ( A F z ) ) ) |
| 6 | 5 | bibi1d | |- ( x = A -> ( ( ( x F y ) = ( x F z ) <-> y = z ) <-> ( ( A F y ) = ( A F z ) <-> y = z ) ) ) |
| 7 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 8 | 7 | eqeq1d | |- ( y = B -> ( ( A F y ) = ( A F z ) <-> ( A F B ) = ( A F z ) ) ) |
| 9 | eqeq1 | |- ( y = B -> ( y = z <-> B = z ) ) |
|
| 10 | 8 9 | bibi12d | |- ( y = B -> ( ( ( A F y ) = ( A F z ) <-> y = z ) <-> ( ( A F B ) = ( A F z ) <-> B = z ) ) ) |
| 11 | oveq2 | |- ( z = C -> ( A F z ) = ( A F C ) ) |
|
| 12 | 11 | eqeq2d | |- ( z = C -> ( ( A F B ) = ( A F z ) <-> ( A F B ) = ( A F C ) ) ) |
| 13 | eqeq2 | |- ( z = C -> ( B = z <-> B = C ) ) |
|
| 14 | 12 13 | bibi12d | |- ( z = C -> ( ( ( A F B ) = ( A F z ) <-> B = z ) <-> ( ( A F B ) = ( A F C ) <-> B = C ) ) ) |
| 15 | 6 10 14 | rspc3v | |- ( ( A e. T /\ B e. S /\ C e. S ) -> ( A. x e. T A. y e. S A. z e. S ( ( x F y ) = ( x F z ) <-> y = z ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) ) |
| 16 | 2 15 | mpan9 | |- ( ( ph /\ ( A e. T /\ B e. S /\ C e. S ) ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |