This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brwitnlem.r | |- R = ( `' O " ( _V \ 1o ) ) |
|
| brwitnlem.o | |- O Fn X |
||
| Assertion | brwitnlem | |- ( A R B <-> ( A O B ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwitnlem.r | |- R = ( `' O " ( _V \ 1o ) ) |
|
| 2 | brwitnlem.o | |- O Fn X |
|
| 3 | fvex | |- ( O ` <. A , B >. ) e. _V |
|
| 4 | dif1o | |- ( ( O ` <. A , B >. ) e. ( _V \ 1o ) <-> ( ( O ` <. A , B >. ) e. _V /\ ( O ` <. A , B >. ) =/= (/) ) ) |
|
| 5 | 3 4 | mpbiran | |- ( ( O ` <. A , B >. ) e. ( _V \ 1o ) <-> ( O ` <. A , B >. ) =/= (/) ) |
| 6 | 5 | anbi2i | |- ( ( <. A , B >. e. X /\ ( O ` <. A , B >. ) e. ( _V \ 1o ) ) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) =/= (/) ) ) |
| 7 | elpreima | |- ( O Fn X -> ( <. A , B >. e. ( `' O " ( _V \ 1o ) ) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) e. ( _V \ 1o ) ) ) ) |
|
| 8 | 2 7 | ax-mp | |- ( <. A , B >. e. ( `' O " ( _V \ 1o ) ) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) e. ( _V \ 1o ) ) ) |
| 9 | ndmfv | |- ( -. <. A , B >. e. dom O -> ( O ` <. A , B >. ) = (/) ) |
|
| 10 | 9 | necon1ai | |- ( ( O ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom O ) |
| 11 | 2 | fndmi | |- dom O = X |
| 12 | 10 11 | eleqtrdi | |- ( ( O ` <. A , B >. ) =/= (/) -> <. A , B >. e. X ) |
| 13 | 12 | pm4.71ri | |- ( ( O ` <. A , B >. ) =/= (/) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) =/= (/) ) ) |
| 14 | 6 8 13 | 3bitr4i | |- ( <. A , B >. e. ( `' O " ( _V \ 1o ) ) <-> ( O ` <. A , B >. ) =/= (/) ) |
| 15 | 1 | breqi | |- ( A R B <-> A ( `' O " ( _V \ 1o ) ) B ) |
| 16 | df-br | |- ( A ( `' O " ( _V \ 1o ) ) B <-> <. A , B >. e. ( `' O " ( _V \ 1o ) ) ) |
|
| 17 | 15 16 | bitri | |- ( A R B <-> <. A , B >. e. ( `' O " ( _V \ 1o ) ) ) |
| 18 | df-ov | |- ( A O B ) = ( O ` <. A , B >. ) |
|
| 19 | 18 | neeq1i | |- ( ( A O B ) =/= (/) <-> ( O ` <. A , B >. ) =/= (/) ) |
| 20 | 14 17 19 | 3bitr4i | |- ( A R B <-> ( A O B ) =/= (/) ) |