This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pprodcnveq | |- pprod ( R , S ) = `' pprod ( `' R , `' S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpprod2 | |- pprod ( R , S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 2 | dfpprod2 | |- pprod ( `' R , `' S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 3 | 2 | cnveqi | |- `' pprod ( `' R , `' S ) = `' ( ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 4 | cnvin | |- `' ( ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) = ( `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 5 | cnvco1 | |- `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) = ( `' ( `' R o. ( 1st |` ( _V X. _V ) ) ) o. ( 1st |` ( _V X. _V ) ) ) |
|
| 6 | cnvco1 | |- `' ( `' R o. ( 1st |` ( _V X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. R ) |
|
| 7 | 6 | coeq1i | |- ( `' ( `' R o. ( 1st |` ( _V X. _V ) ) ) o. ( 1st |` ( _V X. _V ) ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) o. ( 1st |` ( _V X. _V ) ) ) |
| 8 | coass | |- ( ( `' ( 1st |` ( _V X. _V ) ) o. R ) o. ( 1st |` ( _V X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) |
|
| 9 | 5 7 8 | 3eqtri | |- `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) |
| 10 | cnvco1 | |- `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) = ( `' ( `' S o. ( 2nd |` ( _V X. _V ) ) ) o. ( 2nd |` ( _V X. _V ) ) ) |
|
| 11 | cnvco1 | |- `' ( `' S o. ( 2nd |` ( _V X. _V ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. S ) |
|
| 12 | 11 | coeq1i | |- ( `' ( `' S o. ( 2nd |` ( _V X. _V ) ) ) o. ( 2nd |` ( _V X. _V ) ) ) = ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) o. ( 2nd |` ( _V X. _V ) ) ) |
| 13 | coass | |- ( ( `' ( 2nd |` ( _V X. _V ) ) o. S ) o. ( 2nd |` ( _V X. _V ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) |
|
| 14 | 10 12 13 | 3eqtri | |- `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) |
| 15 | 9 14 | ineq12i | |- ( `' ( `' ( 1st |` ( _V X. _V ) ) o. ( `' R o. ( 1st |` ( _V X. _V ) ) ) ) i^i `' ( `' ( 2nd |` ( _V X. _V ) ) o. ( `' S o. ( 2nd |` ( _V X. _V ) ) ) ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 16 | 3 4 15 | 3eqtri | |- `' pprod ( `' R , `' S ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( R o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( S o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 17 | 1 16 | eqtr4i | |- pprod ( R , S ) = `' pprod ( `' R , `' S ) |